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Abstract 

X-ray scattering from a discrete helix possessing 
cumulative angular and translational disorders is 
studied by the Barakat model [Barakat (1987). Acta 
Cryst. A43, 45--49] assuming Gaussian distributions 
for random rotations and translations between subu- 
nits. This model is found to be identical to the 
paracrystalline model of the second kind. The inten- 
sity function shows that the intensity maximum 
decreases with increase in the Bessel order, whereas 
the peak breadth in the fiber direction and the 
intensity minimum increase. 

Introduction 

The scattering intensity for a helical structure having 
cumulative random angular disorder has been 
analyzed. Egelman & DeRosier (1982) derived the 
intensity function using an analogy with polymer 
statistics. Their equation is identical to the one after 
approximation derived by Barakat (1987), who 
assumed that the random rotations between subunits 
can be treated as zero-mean uncorrelated Gaussian 
random variables. The intensities given by the above 
authors, however, were restricted to the intensity 
maxima at the coordinates defined by the selection 
rule of helical diffraction. In the present commu- 
nication, the Barakat (1987) model is analyzed to 
derive the total intensity distribution for a discrete 
helix having angular and translation cumulative dis- 
orders. 

Intensity function with cumulative disorder 

Consider a discrete helix possessing cumulative 
angular and translational disorders. The cylindrical 
coordinates at position j (rj, ~oj, Zy, where 0 _<j-< 
N -  1) may be given by 

J 
~j=ja~o+ E ot, 

t----1 
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J 
z~ =jPa~o127r + ~ At 

t= l  

and 

A~o = 27rh/P, rj = to, (1) 

where P is the pitch of the helix, h is the subunit 
repeat of the helix, ro is the radius and 0, and A, are 
the random variables describing the rotations and 
translations between the points (Egelman & 
DeRosier, 1982; Barakat, 1987). The origin was 
assigned to r = ro, ~0 = 0 and z = 0. The structure 
factor in the cylindrical coordinates (Cochran, Crick 
& Vand, 1952) is given by 

N - I  co 
F(R,~,Z) = ~'. E J,(27rr:R)exp[in(~+ 7r/2)] 

j = 0  n = - - o o  

× exp[i(-n~oj + 2¢rzjZ)]. (2) 

With replacement of the cylindrical coordinates by 
the helical parameters (1) and after elimination of the 
cross terms of the different Bessel orders due to 
cylindrical averaging (Franklin & Klug, 1955), the 
intensity is given by 

c o  

I(R,Z)= Y. IJ,(2rrroR)12(S(n,Z)), 
1,1~-oo 

where 
N - - 1  N - - I  

(S(n,Z)) = N + Z Z exp [ i ( j -  k)Aq~(PZ- n)] 
j=o  k=0 

j ~ k  

x exp - i n  E o , - E o ,  
t----I t--1 

x exp i27rZ Z A t - ~  At (3) 
t = l  t - - I  

and ()  denotes a statistical average. The statistical 
average for the angular disorder in (3) is given by 

exp - i n  Z O, - ~'. 0, 
t----1 t = l  
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=(exp(int+lat)) 
=(exp(-int=~+lOt)) 

for k > j 

for k < j. (4) 

Similar equations are written for the translational 
disorder. With the multivariate characteristic func- 
tion for zero-mean uncorrelated Gaussian random 
variables (Barakat, 1987), 

/ ( m 2  / /  
exp +_ib Z atOt 

t ~ m  I 

where at and b are constants, O, is a random variable 
and (0 2) is the mean square displacement, the statis- 
tical averaging over the Ot in (4) and ,4, leads to 

exp - i n  Y, a , -  ~ 0, t=l t=l 

x exp i27rZ Z=IAt-tZ=IAt 

= #l J-kl for j ~ k, (6) 

where f l=exp(-n2(O2)/2-2"tr2Z2(A2)).  Then, the 
intensity (3) is given by 

(S(n,Z)) 
N - - I  N - - 1  

= N +  E ~ e x p [ i ( j -  k)Aq~(PZ-  n)]ff j-kl. 
j=o k=0 (7) 

j ~ k  

Replacement o f j -  k by m and the double sum by a 
single sum in (7) gives 

N--I 
(S(n,Z)) = U + 2 ( U -  m){exp [imAq~(PZ - n)] m=l 

+ exp [ -  imA~o(PZ - n)]}fl m. (8) 

Use of a finite geometric series leads to 

(S(n,Z)) = Re[N(1 +/-/)/(1 -/-/)]  

- 2Re [ (H-  H N + 1)/(1 - H)2], (9) 

where H = fl exp [iA~p(PZ- n)] and Re refers to the 
real part of the function. 

Equation (9) is given as a function of the continu- 
ous variable Z along the fiber direction. This is an 
identical form to the interference function for the 
one-dimensional paracrystalline lattice disorder of 
the second kind (Vainshtein, 1966). If A~p(PZ - n) = 
2vzr and Z = (n/P) + (v/h), where n and v are integers 
(selection rule of helical diffraction), (9) has the same 
form as equation (3.2) of Barakat (1987). When N is 

large, the second term is negligible, so (9) reduces to 

(S(n,Z)) = N(1 -/32) 

x {1 - 2/3cos [a~0(PZ-  n)] +/32} -1. (10) 

When the cosine term is 1, (S(n,Z)) in (10) gives the 
intensity maximum (S(n ,Z))max = N(1 +/3)/(1 - fl). 
When the cosine term is - 1, i.e. Z = (n/P) + (v/h) + 
1/(2h), (S(n,Z)) in (10) gives the minimum intensity 
(S(n,Z))~n = N(1 -/3)/(1 +/3). Since the integral 
area of the peak is N/h, the integral width (w) of the 
peak after subtraction of the area beneath the inten- 
sity minima is ( 1 -  fl)/(2h). With no translational 
disorder, this reduces to n2(O2)/(4h) for a smaller 
angular deviation. Egelman & DeRosier (1982) 
reported a similar equation with n2(02)/4. For a finite 
number of subunits, the observed integral width 
squared, wEobs, is given by B E + 1/(Nh) 2 + w E, where B 
and 1/(Nh) are the integral width of the direct beam 
and the coherent length of the perfect lattice, respec- 
tively. With the increase in the Bessel order, the 
intensity maximum decreases, whereas the peak 
breadth in the fiber direction and the intensity mini- 
mum increase. When the intensity maximum is 1.2 
times larger than the intensity minimum, the peak 
may no longer be detected (Vainshtein, 1966). This 
occurs at hE0 2-~ 6.18 when there is no translational 
disorder. 

Intensity function with noncumulative disorder 

If the angular and translational disorders are not 
cumulative (for an independent oscillator model of 
thermal disorder or static disorder of the first kind), 
the /3" in (8) may be replaced by /32 (see also 
Worthington & Elliott, 1989). Then, the intensity is 
given by 

(S(n,Z)) = So(n,Z)fl 2 + N(1 - fiE), (11) 

where So(n,Z) is the intensity of the perfect lattice 
and is given by 

sin2[Nd~o(PZ- n)/2]/sin2[a~o(PZ- n)/2]. 

When the displacements are small, the exponential 
term in fl reduces to 

(1 - n2(a2}/2)(1 - 2"rr2Z2(a2)). 

Stokes & DeRosier (1987) reported a similar formula 
for the noncumulative disorders, which contains a 
proportional factor N = arising from the intensity 
maximum of the So(n,Z) term but does not include 
the N(1 -/32) term. 

Discussion 

The Barakat (1987) model of X-ray scattering of a 
discrete helix with a cumulative angular disorder is 
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based on the multivariate characteristic function for 
zero-mean uncorrelated Gaussian random variables. 
We have shown here that this model can lead to the 
intensity formula [(8) and (9)] analogous to that of 
the paracrystalline lattice (Vainshtein, 1966). We 
included the cumulative disorder parameter in the 
structure factor (2) and derived the intensity function 
whereas Worthington & Elliott (1989) defined the 
paracrystalline disorder in the autocorrelation func- 
tion and calculated its Fourier transform. The inten- 
sity in the latter was not given in a closed form and 
was not explicity dependent on the Bessel order n for 
an angular disorder. Although Worthington & 
Elliott (1989) indicated by computer simulation that 
the n dependence of angular disorder is inherent 
in their formulation, the relation between their 
approach and ours has not yet been derived. 

The measurement of a cumulative angular disorder 
has been previously reported for the actin filament as 
12 ° per subunit (Stokes & DeRosier, 1987). These 
authors, on the basis of the theory of Egelman & 
DeRosier (1982), used optical diffraction patterns 
from electron micrographs for a negatively stained 
filament. In order to determine a disorder parameter, 
the intensity of the layer line was plotted as a 
function of the number of lattice points. Their meas- 
ured value, however, appeared to disagree with the 
measured bending flexibility (Erickson, 1989). It will 
be beneficial therefore to use X-ray diffraction inten- 
sifies instead of optical diffraction in order to 
determine the angular disorder of nontreated and 
nonstaining specimens. The procedure of Stokes & 
DeRosier (1987), however, will not be used because 
it requires multiple X-ray diffraction patterns from 
fibers having distinctly different N values. The new 
intensity function described in this text shows the 
way to measure the angular disorder from a single 
X-ray diffraction pattern. As first suggested by 
Egelman & DeRosier (1982), the broadening of the 
intensity along the fiber axis increases with the 
increase in the Bessel order n and the angular dis- 
order. By comparing the breadths or the intensity 
profiles [by using (9)] of the layer lines having differ- 

ent Bessel order n, the angular disorder will be 
determined. Tajima, Kamiya & Seto (1983) noted 
that, as the theory predicts, actin layer lines of a 
molluscan smooth muscle become broader with the 
increase in the absolute value of the Bessel order. 

The effects of disorder on fiber diffraction patterns 
have recently been analyzed (Millane & Stroud, 
1991). The disorders refer to the lattice disorder (the 
first kind) and the variations of a filament positioned 
at that lattice point owing to the Clark-Muus-type 
angular, translational and screw disorders (Clark & 
Muus, 1962; Tanaka & Naya, 1969). While we have 
studied here the cumulative disorder within a helix, 
these workers analyzed the noncumulative disorder. 
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